Model-based spectral analysis of photon propagation through nanoparticle-labeled epithelial tissues
نویسندگان
چکیده
Metal nanoparticles can function as optical contrast enhancers for reflectance-based diagnosis of epithelial precancer. We carry out Monte Carlo simulations to model photon propagation through normal tissues, unlabeled precancerous tissues, and precancerous tissues labeled with gold nanospheres and we compute the spectral reflectance response of these different tissue states. The results indicate that nanoparticle-induced changes in the spectral reflectance profile of tissues depend not only on the properties of these particles but also on the source-detector geometry used. When the source and detector fibers are oriented side by side and perpendicular to the tissue surface, the reflectance intensity of precancerous tissue is lower compared to that of normal tissue over the entire wavelength range simulated and addition of nanospheres enhances this negative contrast. When the fibers are tilted toward each other, the reflectance intensity of precancerous tissue is higher compared to that of normal tissue and labeling with nanospheres causes a significant enhancement of this positive contrast. The results also suggest that model-based spectral analysis of photon propagation through nanoparticle-labeled tissues provides a useful framework to quantify the extent of achievable contrast enhancement due to external labeling and to assess the diagnostic potential of nanoparticle-enhanced optical measurements.
منابع مشابه
Influence of phase function on modeled optical response of nanoparticle-labeled epithelial tissues.
Metal nanoparticles can be functionalized with biomolecules to selectively localize in precancerous tissues and can act as optical contrast enhancers for reflectance-based diagnosis of epithelial precancer. We carry out Monte Carlo (MC) simulations to analyze photon propagation through nanoparticle-labeled tissues and to reveal the importance of using a proper form of phase function for modelin...
متن کاملModeling Time Resolved Light Propagation Inside a Realistic Human Head Model
Background: Near infrared spectroscopy imaging is one of the new techniques used for investigating structural and functionality of different body tissues. This is done by injecting light into the medium and measuring the photon intensity at the surface of the tissue.Method: In this paper the different medical applications, various imaging and simulation techniques of NIRS imaging is described. ...
متن کاملThe Study of Variation of Photon Intensity Inside Biological Phantom by Green Theorem
The Image reconstruction is an important problem in optical tomography. The process of the image processing requires the study of photon migration in biological tissue. There are several approaches to study and simulate propagation of photons in biological tissues. These approaches are categorized into stochastic and analytical groups. The Monte Carlo method as a stochastic method is widely use...
متن کاملThe Impact of the Spectral Filter Bandwidth on the Spectral Entanglement and Indistinguishability of Photon Pairs of SPDC Process
In this paper, we have investigated the dependence of the spectral entanglement and indistinguishability of photon pairs produced by the spontaneous parametric down-conversion (SPDC) procedure on the bandwidth of spectral filters used in the detection setup. The SPDC is a three-wave mixing process which occurs in a nonlinear crystal and generates entangled photon pairs and utilizes as one of th...
متن کاملExperimental determination of photon propagation in highly absorbing and scattering media.
Optical imaging and tomography in tissues can facilitate the quantitative study of several important chromophores and fluorophores. Several theoretical models have been validated for diffuse photon propagation in highly scattering and low-absorbing media that describe the optical appearance of tissues in the near-infrared (NIR) region. However, these models are not generally applicable to quant...
متن کامل